
and finally, 

m (z" - -  v ' )  ~ In v" - -  In v" 
C C 

In v ~ - -  In v~ 
m = ( 2 8 )  

AT 

where A~ = T" - ~' is the time over which the temperature difference changes in the interval 
b' - b". It is convenient to use the galvanometer scale divisions, then 

l n N l - - l n N 2  
m . . . . . . . . . . .  ( 2 9 )  

Ax 

Use of Eq. (29) is quite convenient for practical determination of m. 

NOTATION 

ta, autoclave temperature; 8, temperature change; V, O, c , volume, density, and isobaric 
specific heat of material in ampul; i, thermal conductivity o~ heat meter material; FI, RI, 
area and radius of outer ampul surface; cp', volume isobaric specific heat of material; W', 
correction required for heat loss along c~nductive wires and tube; Cb, ballast heat capacity 
of ampul and other elements; 6, 6', thickness of side and end layers of liquid; a, thermal dif- 
fusivity; V c, core volume. 
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THEORY OF BIVACANCY CONTRIBUTION TO THE COEFFICIENT 

OF SELF-DIFFUSION IN MONATOMIC MOLECULAR CRYSTALS 

E. T. Bruk-Levinson and O. D. Chernetsov UDC 548.532.72 

On the basis of the statistical theory of a crystal with defects, we calculate 
the frequency of jumps of an atom for diffusion in the bivacancy mechanism. 
We obtain an expression for the contributions of different types of bivacancies 
to the coefficient of self-diffusion. Calculations are carried out for the spe- 
cial case of a Lennard-Jones 6-12 potential. 

The vacancy mechanism of diffusion assumes that the coefficient of self-diffusion is 
determined both by monovacancies as well as complex vacancies. Of the various vacancy 
clusters, the most important for diffusion are bivacancies, since the concentration of clus- 
ters containing a larger number of vacancies rapidly falls off with the number of vacancies. 

The known estimates of the contribution of bivacancies to self-diffusion lie in a rather 
wide range (see for example [i]). The difficulties of such estimates are explained by the 
fact that they are mostly in the form of independent calculations of two groups of parameters: 
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Fig. I. Schematic diagram of the 
geometry of a bivacancy-l. The 
bivacancy is at the lattice points 
j and s and an atom, performing 
the jump, is in cell i. 

the formation characteristics of bivacancies and their migration characteristics. In addi- 
tion, one usually takes into account the contribution of only a single type of bivacancy, 
composed of vacancies which are nearest neighbors on the lattice and the bivacancy is as- 
sumed to migrate without dissociation. In addition such an approach is not consistent from 
a theoretical point of view. Thus, one can question the reliability of estimates made on 
the basis of these assumptions. 

The purpose of the present paper is to develop a theory to calculate the bivacancy contri- 
butions to self-diffusion from "first principles," in the framework of classical statistical 
mechanics and to analyze the behavior of these contributions as functions of the thermodynamic 
parameters of a monatomic molecular crystal. 

We start from the expression for the coefficient of self-diffusion obtained on the basis 
of the theory of random walks [2], which for a crystal with a cubic lattice and with the in- 
clusion of bivacancies has the form 

o= (kl + R'/6, (:) 

where k I is the frequency of monovacancy jumps, and k=(~) is the frequency of jumps of bi- 
vacancies of type ~. R is the length of a jump, equal to he distance between the centers of 
contiguous Wigner-Seitz cells. The frequencies k are calculated using various models (see 
[i]). The most consistent approach uses statistical mechanics [3]. The frequency k I and 
hence the contribution of monovacancies in the coefficient of self-diffusion has been calcu- 
lated in [4]. The calculation was based on the statistical theory of a crystal with point 
defects [5, 6], which generalizes the statistical method of conditional distributions [7] 
for such systems. In the framework of this theory the dependence of the characteristics of 
the bivacancies on the thermodynamic parameters of the crystal were considered in [8, 9]. 

Statistical Approach. We consider a system of N identical atoms in a volume V in ther- 
modynamic equilibrium with the Hamiltonian function: 

N N 

Here p~, q~ are the momentum and coordinate of atom ~; m is the mass of the atom; ~(q~, qn) 
is the interatomic interaction potential; the prime on the summation sign means thatthe 
summation is carried out subject to the condition ~ # v, The Gibbs distribution function 
of the system has the form [10] 

D # ( p :  . . . . .  Px,  q1 . . . . .  qN) : ZN l e x p { - - ~ H # } ,  ( 3 )  

where Z N = ~ dp, ... ~ dpN : dq, ... S dqNexp {-~HN}; ~-' = (kBT); RB is the Boltzmann 
constant; T is the absolute temperature. 

We divide the volume V up into M = N + N O cells of volume w i = V/M (i = i, 2, .... M) 
and we include only those states of the system in which each of the cells is either empty 
or contains exactly one particle. Integrating the Gibbs distribution (3), we can introduce 
a sequence of "partial" distribution functions [II], which determine the probability of dif- 
ferent states of groups of cells, subject to the condition that the remaining cells are 
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Fig. 2. (a) Activation energy of self-diffu- 
sion of monovacancies [curves I) and 2)] and 
bivacancies-i [curves 3) and 4)] for 8 = 0.5 
[curves i) and 3)] and 8 = 0.7 [curves 2) 
and 4)]. (b) Effective frequency of monova- 
cancies [curve i)] and bivacancies-i [curve 
2)] for 8 = 0.7 as function of pressure. 

either empty or contain one particle. We use the following notation for these functions: 
each function has indices indicating the numbers of the cells, whose states are described 
by the function; if the arguments of the function consist of a momentum and a coordinate 
whose numbers coincide with the number of the cell, then this means that the cell contains 
an atom; the presence of the index alone indicates that the cell is empty. 

In order to illustrate the approach, we consider the set of functions corresponding to 
the states of a single cell, a pair of cells, and a group of three cells, two of wich are 
empty: F i, Fi(Pi , qi), Fij, Fij(Pi, qi), Fij(Pi, qi, Pj, qj), Fij%(Pi, qi). F i is the 
probability that cell i is empty; Fi(Pi , qi) is the probability density to observe an ar- 
bitrary particle in the neighborhood of the point qi Ewiwith a momentum in the neighbor- 
hood of Pi, Fij is the probability that cells i and j are empty; Fij(pi, qi) is the prob- 

e - -  ability d nsity of observing an arbitrary particle in the neighborhood of the point qi6w i , 
with momentum Pi; and cell j is empty; Fij(P i, qi, Pj, qi) is the corresponding probability 
density for two particles in two cells; f~nally Fij~(Pi," qi) is the probability density 
that here is an atom in cell i in the neighborhood of the point qiEwi with momentum Pi and 
cells j and E are empty. 

In equilibrium statistical mechanics the momentum and coordinate distributions are in- 
dependent [i0]: 

Fi (Pi, qi) = F (pi) Fi (qi), Fu (Pi, qi) = F (pi) F u (qi), 

FU (Pi, q~, PJ, q J) = F (pl) F (pJ  Ft j  (qi, q/), 

FiJz (Pi, qi) : F (Pi) Ful (qi), 

(4) 

a n d  
F (P0 = [~/(2~m)] a/2 exp { - -~p [ / (2m)} ,  ~ dpiF (P0 = I. 

(5) 
The functions Fi(qi) , Fij(qi), Fij(qi, qj) describing the distribution of particles in con- 
figuration space, together with the functions F i and Fij , satisfy the following rigorous 
equations, which follow from their definitions: 

Fi + ~ dqiF~(qi) = 1, FI = Fu + [ dqsFu (q.O, 
t 'i 

Fi (qi) -- FU (qi) + j" dqjFij (qi, qs), 
1 

(6) 

where the integration is carried out over the volume of the cell. 

Using the concept of mean field potentials and quasipotentials [7, 12, 
procedure of closure, the functions can be represented in the form 

13] and also the 

Fi = (no/Qo) exp {--[~q~i}, Fi (ql) := (n/Q) exp {--I~q~i (qi)}, 

F u  - exp {]~ [q~i.s + q~s,i] FiEf, ( 7 )  
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F~ (qO = exp {~ [%,g (qO + ~,*]} F~ (q,) F~, 

F~ (q~, q~) = exp {~ [r (qO + ~.~ (qi) - -  ~ (qf, q~)]} Ft (qf) F~ (q~), 

F~g~ (q~) ---- exp {6 [q~i.~ (q0 + ~P~.~ + % z (q0]+ q~z.i + ~,z + %.~]} F~ (q~) F~F~, 

Qo = exp { - -~ i} ,  ::Q= J ~ dq, exp { - - ~ ,  (q,)}. 
t 

Here no = N0/M is the concentration of empty cells, and n = 1 - n o . 
~i(qi) and the quasipotentials ~i are sums of the form 

M M 

~ ( q ' ) =  ~ ~,m(qO, ~ =  X ~i,.~. (9) 
m ~ f  m r  

In  o rde r  t o  o b t a i n  a c l o s e d  sys tem of  e q u a t i o n s  fo r  t he  p o t e n t i a l s  ~ i , m ( q i )  and t he  q u a s i -  
p o t e n t i a l s  ~ i ,m i t  i s  s u f f i c i e n t  to  s u b s t i t u t e  t he  e x p r e s s i o n s  f o r  t h e  f u n c t i o n s  (7) i n t o  
t he  l a s t  two e q u a t i o n s  of  (6) and we thus  o b t a i n  

exp { - - ~ , j }  = exp {~J,i} F~ + .f dq~ exp { ~ , t  (q~)} F~ (q~), (10) 
i 

exp { - -~ t , i  (qO} = exp { ~ , i }  Fi + ,I dq~ exp {~ [~,~ (q~) --  ~ (q,, q~)]} F~ (q~). 
(1i) 

(s) 

The mean f i e l d  p o t e n t i a l s  

The solution of this system of nonlinear integral equations determines all of the functions 
(7), and through the free energy 

F = --(M/B)[ no In (Qo/no) +: n In (Q/n)] (12) 
a l s o  a l l  of  t he  thermodynamics  of  t he  sys tem.  

Of p a r t i c u l a r  i n t e r e s t  i s  t he  f u n c t i o n  F i j s  , q i ) ,  which has  t he  form 

Fijz (Pi, q0 = [~/(2~xm)l 3/2 exp {6 [_p/2/(2m) + tp~.j (q0 + q~J,~ + q~t.z (q0 + q~z,J + q)z,i + q~.z]} F~ (qt) FjFI. (13) 
Jump Frequency of Bivacancies. We consider now an elementary act of diffusion of a 

bivacancy. For definiteness we first consider diffusion without dissociation, where the 
bivacancy maintains its structure. A bivacancy composed of two vacancies which are ~-th 
neighbors on the lattice will be called a bivacancy-a. We first consider the self-diffusion 
of a bivacancy-i (nearest neighbors on the lattice) for which the elementary act of diffu- 
sion reduces to a rotation of its axis by 60~ one of the vacancies remains fixed (in cells 
and the second goes from cell j into the neighboring cell i, where there was an atom (ac- 
tually, of course, the atom goes from cell i into cell j). The coordinate system is shown 
in Fig. i. The self-diffusion of other types of bivacancies, both with dissociation and 
without it, can be considered in a similar way. 

We will assume that an elementary act of diffusion of a bivacancy is completed if the 
atom in cell i reaches its boundary Sij with cell j and has a positive component of momen- 
tum along the z axis. Correspondingly, the vacancy jumps from cell j into cell i. Hence 
the jump frequency of bivacancies-i is given by the expression 

k~"=4  X ~ d(pf /rn) ~ d (pf /m).( d(p~/rn) .f dq~F~,,(p,, qO(p~lm). (14) 
/ = 1  . . . .  o S i j  

In a similar way we can determine the jump frequency for other types of bivacancies. There 
will be differences in the number z a (the number of atoms on the a-th coordinate sphere) and 
in the numerical coefficient in front of the summation sign; this factor is related to the 
symmetry of the transition. 

Using the explicit form of the function FijE(Pi , qi), the integration over momentum can 
be done directly. Also in an infinite crystal the probability that a given cell is empty 
does not depend on the number of the cell and hence F i = Fj = n o . Then (14) can be written 
in the form 

le~z~=4zl (2~m~) -~/2 (1-- no) n~ exp {~ [~i,i+ ~i,l+ %d-k %,i ]} • 

X y dq, exp {~ [~*,i (q*) + ~i,z (qO --  ~J (qi)]}/,[ dq, exp {-- ~ i  (qO}. 
SiS" w i 

(15) 
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Fig. 3. (a) Energy of activation of the self-diffusion of monovacancies [curve i)] and 
bivacancies-i [curve 2)]; (b) effective frequency of monovacancies [curve i)] and bi- 
vacancies-i [curve 2)] as functions of the inverse temperature for p = 0. 

Fig. 4. Relative contribution to the coefficient of self-diffusion of bivacancies-i as 
a function of temperature for p = 0 (a) and pressure for 8 = 0.7 (b); $, %. 

Therefore, the determination of the coefficient of self-diffusion for bivacancies reduces to 
two problems. The first is to determine the mean field potentials and the quasipotentials; 
the second is to calculate the integrals in (15) over the surface Sij and over the volume wi. 

In order to determine the potentials and quasipotentials we must solve the system of 
nonlinear integral equations (10) and (ii). We can obtain an approximate solution of this 
system by using the fact that n o ~ 1 (n o = I0-3-i0 -4 near the triple point). Thus, we seek 
a solution in the form of a series in n o [14]. Limiting ourselves to the zeroth approxima- 
tion and calculating the integrals by the method of Laplace [15] (the function F i (qi) has 
sharp maxima at the lattice points) we obtain an expression for the mean field potentials 

~ , i  (q~) = r  (q+' n~) - -  ~i,~ (n j) - -  ~-1 In { I § o-a {A~i, ~ (n/) - -  ~" (q~, nj) - -  

--2@' (qi, nj)/Iqi-- n~l + ~ [V~i. ~ (n~) + r  (qi. nj) (qi--  nj)/Iq~-- n~]]~}} (16)  

and the quasipotentials 

%,s=--r (n~j)12 + ~-1 In {(1--r+s) ~/21[ 1 + (A%s (n~) + ~k~ s)l(2~)]}. ( 1 7 ) 

Here qj = nj + uj, where nj is the coordinate of a lattice point, uj is the displacement of 
the atom from the lattice point, and u i~wi; nii = In i -- ~il; 6 is the Laplacian operator; 

Fiia = [&~ (nil)j -&~i,a~(ni)- 8gii~ ]/(2~ g i a  ,a~= ki,a~ + ~' (ni~) ;a ki,3" = Ivy'1, 3'(hi) I ; ~ = 
M 

A~i,j (hi)" 

The derivatives ~i,i(ni) entering the right hand side of (16) can be calculated by dif- 
ferentiating the pote~tial"~j,i(qj) the necessary number of times and then putting qj = nj. 
We then obtain a system of transcendental equations which can be solved numerically for a 
given iteratomic potential. The second problem is to calculate the integrals in (15). This 
problem is also solved by the method of Laplace. The volume integral in the denominator 
of (15 )  is 

dqi exp {--  ~ i  (qi)} = [2~/(~)] 3/2 exp {--  ~ i  (hi)}. (18)  
w s 

It is somewhat more difficult to evaluate the surface integral in the numerator of (15). 
The problem, however, is facilitated by the knowledge of the explicit form of the integrand. 
We analyze the behavior of the function in the exponent of the integral over Sij: 

(q3 = ~ (q3 -- %,i (q~) -- %,~ (qd- (19) 
Symmetry considerations and the explicit form of this function show that it has a minimum 
in the plane Sij forming the boundary of the cells i and j. Let the point at which the mini- 
mum of the function %(qi) occurs be s i. By symmetry this point must lie on the x axis. We 
expand the function ~ in a series in x, keeping the quadratic terms: 

, (x) = ,  (0) + [ a ,  (o)/ax] x + (1/2) [0~, (o)/ax ~] x ~  . . . .  ( 20 )  

Differentiating this expression with respect to x and equating the result to zero, we find 
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I%! = - -  [0~ (O)/Oxll[~ (0)/0xi] �9 ( 2 1 )  

The minimum o f  r  c o r r e s p o n d s  t o  t h e  maximum o f  t h e  i n t e g r a n d ,  and we can  a g a i n  a p p l y  
the method of Laplace. We then obtain 

5 dq~ exp {~ [%,y (qO -+ ~ , t  (qi) - -  ~ (qi)]} := [2~/(~%)1 exp {~ [~,y (%) + %,t (s~) - -  ~ (%)1}, ( 2 2 )  
sii 

where o s = [(82@(si)/axi)(SZ~(si)/~y2)] It2 And so we obtain the following expression for 
the frequency of bivacancy jumps 

k~ ~) = % exp {- -  ~E~}, ~ ( 2 3 )  

where 

v2 = 4zl (I - -  no) (o/m)' /=[~/(2a%)1,, ( 24 ) 

E== g~') + {[r (%) - -  r (%) - -  %.z (s0i - -  [r - -  % d  (nO - -  %,t (ni)l - -  {[%,l (n0 + %.~1 + [%.i (nO + r ( 2 5 )  

Here g2 (I) is the Gibbs potential of the formation of a bivacancy, and is given by 

g~U= ~j§ r  (26) 

where P is the pressure. The concentration of bivacancies ca (~) is 

c~) = (z~/2) exp {-:-- ~g~)}. ( 2 7 )  

We analyze (25) for the activation energy of self-diffusion. The contribution of the 
energy of formation of a bivacancy is given by (26). The rest of the expression can be in- 
terpreted as the migration activation energy of bivacancies: 

f ~  ={[~ (%) - -  %,i (%) - -  %,~ (s3] - -  [ ~  (nO - %.~ (nO - %,~ (nO1} {[%,~ (m) + %.~1 +[[%,~ (nO + %~1}. ( 28 )  

The migration activation energy is composed of two parts. The expression in the first set 
of curly brackets represents the difference between the energies of an atom on the cell 
boundary (at the saddle point s i) and an atom in the center of the cell (lattice point) 
where the fact that cells j and s are occupied by the bivacancy is taken into account. In 
essence this is a barrier height which must be overcome by the atom in order to go into one 
of the cells occupied by the bivacancy. In the second set of curly brackets there are two 
terms, corresponding to correlations between an atom at the lattice point and each of the 
vacancies making up the bivacancy. By definition these terms are related to the correlation 

functions [8]: 

giJ (ni) = exp {81%,i (nO § ~y,,]} --1, 

gi~ (n,) -- exp {8 l%a (nO + %.,1}--1." (29) 

To illustrate the approach in a specific case, we calculated the coefficient of self-diffu- 
sion of bivacancies-i in a crystal whose atoms interact according to a Lennard-Jones 6-12 

potential: 

(r) = 48 [(~/r) I'- (~/r)q (30) 

All calculated quantities are represented in dimensionless form: the energy characteristics 
are expressed in units of e, the dimensionless temperature is 8 = kBT/e; the inverse tem- 
perature is ~ = 8 -I (for this quantity we use the same notation as for the corresponding di- 
mensionless quantity); the linear characteristics are expressed in units of r 0, the volmne 
characteristics are in units of r0 s, and the pressure characteristics are in units of e/r, s 
For an fcc lattice, into which the inert gases crystallize (we do not consider helium here), 
we calculated the quantities 92[v~m/(4zl)], E 2, and 6 = D=(1)/D, where D2(l) is the contri- 
bution of bivacancies-i to the coefficient of self-diffusion. All of the characteristics of 
bivacancy self-diffusion are compared with the corresponding characteristics for the self- 
diffusion of monovacancies. In the form given here, all results are correct for arbitrary 

e, r o, m. 

Computational Results. As evident from Fig. 2, the activation energy and the effective 
frequency for bivacancies are higher than the corresponding quantities for monovacancies, 
although the dependence is practically identical. 
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In Fig. 3 we show the same quantities as functions of the inverse temperature for P = 0. 
We note that although v2 and E 2 are normally taken as constants in the analysis of experi- 
mental data, both of these quantities depend on 8, and this dependence is significantly non- 
linear. In Fig. 4 we show the relative contribution of bivacancies-i (completing jumps with- 
out dissociation) to the coefficient of self-diffusion, as a function of the pressure and 
temperature. The assumption of no dissociation means that after a jump the bivacancy-i 
maintains its structure. From these figures it is evident that at the triple point this con- 
tribution is about 2.4%. 

In view of the geometry of the lattice, bivacancies-3 and bivacancies-5 can also diffuse 
without dissociation (in the approximation used here bivacancies-6 and higher order bivacan- 
cies were not taken into account and it was assumed that their binding energies were equal to 
zero). In these cases the pairs of cells (i, ~) and (j, ~) are separated by third and fifth 
neighbor distances, respectively, and cells i and j are nearest neighbors. An elementary act 
of self-diffusion occurs as in the case of bivacancies-l, however, the angle of rotation of 
bivacancy is less than 60 ~ In addition, there are 16 types of transitions for self-diffu- 
sion of bivacancies with dissociation. Bivacancies-l, after completing an elementary act of 
self-diffusion, become bivacancies-~ (~ = 2, 3, 4). Bivacancies-2 can become bivacancies-~ 
(~ = 3, 5) after an elementary jump, bivacancies-3 can become bivacancies-~ (~ = 4, 5) and 
bivacancies-4 can become bivacancies-5. Naturally the inverse processes are also possible. 
The structure of the transitions is determined by the geometry of the lattice, the range of 
the correlations between vacancies and by the fact that an elementary act of self-diffusion 
as considered here, is limited to transitions of the atom to one of the nearest lattice 
points. For all the transitions listed above, numerical calculations were done for the 
triple point of argon. The calculations showed that the total contribution of bivacancy 
self-diffusion can reach 9% at the triple point. Using the data in Fig. 4, one can see 
that the bivacancy contribution to the coefficient of self-diffusion begins to become im- 
portant only when we approach the melting line. 
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